
THE INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY
Int J Med Robotics Comput Assist Surg 2008; 4: 77–86. ORIGINAL ARTICLE
Published online 14 February 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/rcs.177

Hierarchical spatial hashing-based collision
detection and hybrid collision response in a haptic
surgery simulator

X. Li1

L. Gu1,2*
S. Zhang2

J. Zhang2

G. Zheng2

P. Huang2

J. Xu3*

1Computer Science and Engineering
Department, Shanghai Jiao Tong
University, Shanghai, People’s
Republic of China
2School of Software, Shanghai Jiao
Tong University, Shanghai, People’s
Republic of China
3Shanghai Renji Hospital, Shanghai,
People’s Republic of China

*Correspondence to: L. Gu,
Computer Science and Engineering
Department, Shanghai Jiao Tong
University, Shanghai, People’s
Republic of China.
E-mail: gu-lx@cs.sjtu.edu.cn or
J. Xu, Shanghai Renji Hospital,
Shanghai, People’s Republic of
China, E-mail: xujiaar@online.sh.ca

Accepted: 21 December 2007

Abstract

Background Collision detection and response are two crucial aspects in a
virtual surgery simulator, which significantly affect the output in real-time
response and simulation realism.

Methods We propose a collision detection algorithm which employs a novel
hierarchical spatial hashing to effectively achieve appropriate parameters.
Thereafter we present a hybrid collision response scheme which takes the
advantages of three traditional methods and introduces a ‘force filter’ to
obtain more realistic feedback force.

Results The average performance of our proposed collision detection has
been improved by 15.65% against the traditional method. After collision
response processing the smoothness of feedback force has been greatly
enhanced, and this indicates a more realistic feedback force without restricting
the range of force inputs.

Conclusions The experimental results reveal that the proposed approaches
can achieve the real-time response and simulation realism required by a
haptic surgery simulator. Copyright 2008 John Wiley & Sons, Ltd.

Keywords virtual surgery; collision detection; collision response; feedback force

Introduction

Background

Minimally invasive surgery (MIS) has become increasingly important in
recent years. With the development of the virtual reality (VR) technology
and haptic devices, many VR-based systems presenting comprehensive virtual
organ models appear to be widely in use by surgeons in training for the
purpose of repeatedly practising surgical procedures. However, the oper-
ation is too complicated to manipulate, since it is difficult for surgeons
to know the exact depth of a surgical tool on a two-dimensional screen.
After careful discussions with surgeons, we found that both vision and hap-
tic feedback are necessary; we need to know when and where the tool
touches an organ, how the organ deforms and how much the feedback
force is. Collision detection determines when and where two geometrical
entities touch each other, and collision response computes the behaviour
after the collision has been detected. Therefore, collision detection and
collision response algorithms are extremely important in implementing a

Copyright 2008 John Wiley & Sons, Ltd.

78 X. Li et al.

haptic surgery simulator (HSS). However, implementing
an effective and stable collision detection algorithm in a
real-time response required system and finding a collision
response method to generate some reasonable feedback
force in a haptic required system constitute a considerable
challenge.

We are developing a haptic laparoscopic surgery
simulator, whose current target is to incise a tumour
on a kidney in the virtual scene. In order to obtain
real-time response and simulation realism, we proposed
an improved collision detection algorithm for detecting
the collision between deformable objects, and a hybrid
collision response scheme for calculating deformation of
soft tissues as well as generating continuous feedback
force. These two approaches are designed to be general
methods for most surgical simulators which require
collision detection between deformable models and/or
calculation of a realistic feedback force. This paper focuses
on the two important methods invented and implemented
in an HSS.

Related work

Collision detection
The aim of collision detection is to determine intersections
between geometrical entities. In a HSS, the interactions
to be detected are usually interactions of some surgical
tools with soft tissues, and those soft tissues are
always deformable models. Many algorithms for detecting
collision between deformable models have been proposed
in recent years (1–3); however, in our case, the
intersections to be detected were between tetrahedra
and vertices, whereas the methods above used different
models. There are two traditional approaches can be
used in our case: spatial partitioning and bounding
volume hierarchies. Early work in this area has been
done: in (4), uniform subdivision spatial hashing
was used to interactively detect collisions between
molecules; (5) presented a hierarchical spatial hashing
scheme for collision detection in robot motion planning,
but this approach was limited to collision detection
between swept-volume bounding boxes in a rigid
body environment; in (6), a uniform subdivision
spatial hashing scheme was applied to efficiently detect
collisions between deformable tetrahedral meshes. This
approach performs very well; however, it has some
limitations in choosing an appropriate grid resolution.
We proposed an improved hierarchical spatial hashing
scheme (7) for overcoming this limitation, which is
described below.

Collision response
In an HSS, collision response computes the forces resulting
from a collision, which can be categorized into two
classes, the force causing soft body’s deformation and
the feedback force. Collision response schemes suitable
for real-time deformable model handling were mainly

categorized into three distinct approaches, called the
penalty force approach, the contact surface computation
and the analytical solution. The idea of a penalty
force is first mentioned in (8). Penalty-based methods
evolved to constraint-based methods proposed in (9).
This method has good efficiency, although influenced
by penetration. Contact force-based algorithms have also
been discussed (10–15); this scheme avoids penetration
but has a high time consumption. The analytical collision
response approach applied to deformable models is
discussed in (16–18); it is very precise and also avoids
penetration, but it also causes an extreme computational
overhead.

Another important task of HSS is to provide a feedback
force approximation to the real operation. A variety of
forces for haptic simulation has been presented in (19);
(20) presents a method for creating surgical simulators
with high-fidelity haptic feedback. A reasonable feedback
force should continuously be kept on scale and direction
in order to eliminate an unnatural feeling for the
operators.

After analysing the advantages and disadvantages
of existing methods, a hybrid collision response
method was initially proposed in (21), and it has
been systemized and a ‘force filter’ also introduced
in this study to obtain a more realistic feedback
force.

Materials and methods

System overview

We developed an HSS for laparoscope-based MIS training.
It integrated a set of functions, including a mathematical
model for soft tissue deformation and collision detection
as well as response and cutting, where volume meshing
is the fundamental procedure for the simulation. Figure 1
shows the framework of the whole system, and we mainly
focus on the implement of collision detection and collision
response in this paper.

Figure 1. The simulator framework

Copyright 2008 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2008; 4: 77–86.
DOI: 10.1002/rcs

Collision detection and response in a haptic surgery simulator 79

Collision detection

Hierarchical subdivision
The method subdivides space into a hierarchical grid,
which is made up of axis-aligned cubes, the so-called grid
cells, with a flexible edge-length k, whose edge length is
called the grid cell size.

Assume that a scene of n objects consists totally of m
tetrahedra. In a first pass, for each of the m tetrahedrons,
it determines which grid cells the tetrahedron occupies,
and the grid cell size is optimized for each tetrahedron.
Let s = size(t) be the length of the longest edge of the
axis-aligned bounding box of a tetrahedron t; the grid cell
size k which is to be used for the mapping of t is then
defined as:

k = 2[log(s)
2] (1)

According to equation 1, in a one-dimensional case
an object never occupies more than two grid cells, and
less than four or eight in a two- or three-dimensional
case, respectively. Here [log(s)

2] defines the spatial grid’s
subdivision level, named l, and it determines how coarsely
the spatial grid is subdivided.

Mapping
Since space is subdivided into a hierarchy of grid cells,
each point (x, y, z) belongs to a unique grid cell. The
aim of mapping point (x, y, z) to the address of the grid
cell in which it is contained is to find a unique address
for each possible grid cell. The mapping is defined as
follows:

x
y
z

 =

[x/k]
[y/k]
[z/k]

l

 (2)

where k is the grid cell size and l is the subdivision level.
Note that smaller grid cells contained in a bigger one also
need a unique address. Then a hash function is chosen to
map the address (x, y, z, l) uniformly over the whole hash
table. It is important that spatial nearness does not result
in nearness in the hash table. The hash function is defined
as:

hash(x, y, z, l) = (xp1 ⊕ yp2 ⊕ zp3 ⊕ lp4) mod sH (3)

where p1, p2, p3 and p4 are large prime numbers, SH
is the size of the hash table and ⊕ denotes the XOR
operator.

Point in tetrahedron test
After the mapping phase described above, each vertex
of a tetrahedron is mapped into a grid cell, whose
unique address is then mapped into a different entry
of a hash table. Thus, each tetrahedron corresponds to
several hash entries. Then, in the collision detection
phase, the algorithm scans the hash table and takes
only linear time to find the potential collisions between

tetrahedra whose vertices occupy the same entry of the
hash table. Finally, narrow-phase collision detection is
employed in these tetrahedra which potentially collide,
i.e. to test whether a point p is inside a tetrahedron
t. There are multiple methods for such a test, e.g. to
use barycentric coordinates to test whether a point p
is inside a tetrahedron t [see (6) for more details].
Note that the partitioning process should be repeated
and the hash table should be updated for every time
step, since the objects will change positions during the
simulation.

Collision response

Overview
The method divides the whole collision response
procedure into three steps, the preprocessing step,
the deformation step and the force feedback step
(Figure 2). In an HSS, collision response has two
tasks: one is to work out the force causing soft tissue
deformation, which is implemented in the deformation
step; another is to generate a realistic feedback
force in the feedback step. In order to increase the
stability and accuracy of the computation, another
preprocessing step was added to refine the penetration
depth.

Preprocessing step
In the preprocessing step, a kind of analytical solution
approach was employed. We added backtracking steps
at the time when collision was being detected, which
led to a limited effect on the whole time complexity but
increased the frequency of computation. The backtracking
method is described as algorithm I, where step is
the time of backtracking, stepAmount is a predefined
threshold of step, timeFactor is a coefficient of time
step, epsilon is a predefined small number, and when
timeFactor ≤ epsilon, or step ≥ stepAmount the process
will be stopped. Inside is a coefficient that marks
whether a point is inside an object, currentPos is the
coordination of current point and moveDir is the vector of
movement.

Figure 2. Three steps of the hybrid collision response method

Copyright 2008 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2008; 4: 77–86.
DOI: 10.1002/rcs

80 X. Li et al.

Algorithm I

begin
Step ← 1
timeFactor ← 1
while step < stepAmount and
timeFactor > epsilon do

if Inside (point) then
inside ← 1

else
inside ← −1

end if
timeFactor ← 1/2step

currentPos ← currentPos
+ inside ∗ timeFactor
∗ moveDir

step← step+1
end while

return currentPos
end

Deformation step
In the deformation step, the optional algorithms are
the penalty force-based algorithm (22), the contact
force-based algorithm (23) and the spring model-based
algorithm, to which are added some springs between two
objects when they are colliding (Figure 3). The nodes
connected to springs will finally return to the balance
position, and the collision force between these two objects
will be released.

The choice of algorithm should depend on the
requirements of different systems. The penalty force-
based and spring model-based algorithms are suitable for
a real-time response primary system, while the contact
force-based algorithm is appropriate in a system where
a high quality of visual effect is required. The spring
model-based algorithm is also suitable for a system which
requires high stability.

Force feedback step
In the force feedback step there are also three options: a
penalty force-based method (22); a deformable model-
based method, which calculates the internal force of
each mass point and accumulates them to get the total
response force of the collision area; and a spring model-
based method. The deformable model-based method is
more suitable for a real-time response-required system,
whereas the spring model-based method is good for a
force continuity-required system.

Figure 3. Spring model-based approach. When the grey entity
collides with the white one, springs are inserted between them

Once the response force is calculated, a ‘force filter’ is
introduced for the purpose of achieving a more realistic
feedback force. A PHANToM Desktop (Sensable Inc., USA)
is used in our HSS, having a limitation of output force of
0–7.9 N. Unfortunately, the response force we calculated
is far out of this range, and the ‘force filter’ is used
to solve this problem without restriction of input scope,
which includes two steps: mapping and smoothing.

Equation (4) (see Appendix I for more details) is used
to map force into a smaller range in the mapping step.
Here forceX, forceY and forceZ are response forces in three
dimensions, scaledForceX, scaledForceY and scaledForceZ
are the respective forces after mapping, forceThreshold is
the biggest force sent to the PHANToM Desktop, forceMax
represents the biggest absolute value of the forces in three
dimensions and commonForce is the force that appears
with a high frequency:

scaledForceX =
2forceX · arctan[(forceMax · π)/

(4commonForce)]forceThreshold
π · forceMax

scaledForceY =
2forceY · arctan[(forceMax · π)/

(4commonForce)]forceThreshold
π · forceMax

scaledForceZ =
2forceZ · arctan[(forceMax · π)/

(4commonForce)]forceThreshold
π · forceMax

(4)

In the smoothing step, a linear interpolation method
is employed to smooth the force output to increase its
quality of continuity.

Computation optimization

For the real-time capability, the visual display required
an update rate of 30 Hz, while a stable haptic display
required an update rate of 1000 Hz. Due to the large
gap existing between these two requirements and our
willingness to take advantage of the widely used dual-
core processor, it was desirable to separate the device-
control module from the whole simulator. A server was
designed to control all haptic feedback devices, which
communicated with the simulator through inter-process
communication (IPC) methods (Figure 4). Because the
loop of the server was running much higher than that of
the client, information from the device, such as position,
were not sent unless a request from the client was
received. This design was able to increase the overall
performance of the dual-core-based computer, since the
server and client ran on two processors. It also contributed
to maintainability and adaptability.

Results

System development

Our laparoscope-based HSS (Figure 5) was developed on
a platform with Pentium IV 2.6 GHz CPU, 2 GB RAM and a

Copyright 2008 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2008; 4: 77–86.
DOI: 10.1002/rcs

Collision detection and response in a haptic surgery simulator 81

Figure 4. The dual core-based platform

GeForce 6800 graphic card. All the time critical simulation
algorithms, such as collision detection and response, were
developed in C++, and the necessary user interface was
built using Python.

Collision detection

Here we compared the improved hierarchical spatial
hashing scheme to the traditional spatial hashing
algorithm, using a regular grid proposed by (6). Two

objects were employed in the collision detection system,
one sphere and one tetrahedral model derived from
clinical kidney data. This configuration resulted in 524
vertices of the sphere that penetrated tetrahedrons
of the kidney. Both objects together consisted of
49 848 tetrahedrons. Figure 6 shows a comparison of
the performance of hierarchical spatial hashing against
regular grid spatial hashing. Table 1 shows a performance
comparison between hierarchical spatial hashing and
regular spatial hashing, where the performance increment
was calculated using equation (5), in which P is the
performance increment, R is the run time of the regular
grid method and H is the run time of the hierarchical grid
method:

P = R − H
R

(5)

Table 1. Performance comparison between hierarchical spatial
hashing and regular spatial hashing (7)

Scene A B C D Average

Objects 2 100 36 9 –
Tetrahedra 49082 16200 1728 432 –
Vertices 14120 6400 972 243 –
Hierarchical grid
(ms)

174 54 5.4 1.3 –

Regular grid (ms) 220 65 6.1 1.5 –
Performance
increment (%)

20.9 16.9 11.5 13.3 15.65

Figure 5. The snapshot of the system user interface

Copyright 2008 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2008; 4: 77–86.
DOI: 10.1002/rcs

82 X. Li et al.

Figure 6. Performance comparison of hierarchical spatial hashing against regular grid spatial hashing

(A) (B)

(C)

Figure 7. Comparison of deformations. The yellow sphere collides with a simulated tumour on a kidney. The tumour is deforming
when collision has been detected, and a generated feedback force can be felt through the PHANToM. Deformation using: (a) penalty
force-based algorithm; (b) contact force-based algorithm; (c) spring model-based algorithm

Collision response

Since the collision response algorithm had two tasks,
the collision response experiment was divided into

deformation evaluation and force feedback evaluation. In
both we used clinical kidney data containing 1922 points
and 6538 tetrahedra, a simulated tumour containing
206 points and 583 tetrahedra, and a sphere-shaped

Copyright 2008 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2008; 4: 77–86.
DOI: 10.1002/rcs

Collision detection and response in a haptic surgery simulator 83

Figure 8. The comparison of forces continuity along x, y and z coordinates. Force generated from: (a) penalty force without
arctan(i) scale; (b) deformable model without arctan(i) scale; (c) spring model without arctan(i) scale; (d) penalty force with
arctan(i) scale; (e) deformable model with arctan(i) scale; (f) spring model with arctan(i) scale

tool containing 54 points and 164 tetrahedra. Figure 7
shows a comparison of the deformation using the penalty
force-based, contact force-based and spring model-based
methods, respectively.

The desired feedback force should be continuous and
smooth; therefore we evaluated both the continuity
and smoothness of the forces. First, we compared
the continuity of forces calculated using the three

methods mentioned above. Figure 8A–C shows the
forces without the arctan(i) scale. Because a small
fluctuation cannot be shown clearly in a compressed
range, we needed to know the forces’ condition after
the arctan(i) scale (Figure 8D–F). Second, we evaluated
the smoothness of the feedback force. Figure 9 shows
a comparison between the forces before and after
smoothing.

Copyright 2008 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2008; 4: 77–86.
DOI: 10.1002/rcs

84 X. Li et al.

(A)

(B)

Figure 9. Comparison between forces in x, y and z coordinates,
(a) before and (b) after smoothing

Discussion

Collision detection

As described above, the uniform grid approach (6) has
some limitations in choosing an appropriate grid
resolution. If the grid resolution is too high, one primitive
occupies a large number of grid cells and the mapping
process becomes extremely costly. In contrast, if the grid
resolution is too low, many primitives are mapped into
one single grid cell, which leads to high costs in the
narrow phase, since many primitives have to be checked
for intersection. Moreover, it is not easy to determine
the recommended optimal grid size if the objects to be
tested are made up of non-uniform-sized tetrahedra. The
limitations above were overcome by using a hierarchical
spatial hashing scheme here, and an optimal grid cell size
for each tetrahedron could be achieved.

Table 1 shows that, compared with regular spatial
hashing, the average performance of hierarchical spatial
hashing was increased 15.65%. Especially in a case where
the grid size was quite irregular (e.g. case A in Table 1),
our method could significantly improve the performance
(20.9%). This feature can also be found in Figure 6,
where the proposed hierarchical spatial hashing is not
dependent on user-defined parameters but is optimized
automatically.

Collision response

The penalty force-based approach (8,9) is widely
used in interactive real-time simulations, due to its
computational efficiency. However, one of the biggest
drawbacks of this method is penetration, which should
be avoided in an HSS. The biggest advantage of the
contact force computation approach (10–15) is that it
avoids penetration; however, it needs a high sampling
frequency, which cannot meet the requirements of a
real-time response in an HSS. The advantages of the
analytical collision response approach (16–18) are the
high precision and lack of penetrations, but it will
cause an extreme computational overhead, which is
intolerable for a real-time response-required HSS. Our
proposed hybrid approach uses the advantages of the
three traditional approaches as well as eliminating their
disadvantages. Modules in the three steps discussed above
have high cohesion and low coupling, so there are many
combinations, and which one will be selected depends on
the requirements of each different system.

In the deformation step, if the penalty force-based
algorithm is chosen, there is a problem in choosing an
appropriate parameter. This problem also exists if we
choose the contact surface based algorithm. However,
both have a good visual effect (Figure 7A, B). Although the
deformation is not so good if we choose a spring model-
based algorithm (Figure 7C), this algorithm is much more
stable if we set an appropriate elastic coefficient. This
result is the same as discussed above.

In the force feedback step, as seen from Figure 8A–C,
compared to the other two methods the penalty force-
based method seems to generate the most continuous
force. However, different from Figure 8A, the force is not
so continuous, as shown in Figure 8D after the force in
Figure 8A is mapped to (−1, 1) using equation (4). This
is because the range has been compressed from (−1000,
2500) to (−1, 1); the small fluctuation which cannot be
shown in Figure 8A has been magnified and is shown
clearly in Figure 8D. On the other hand, the continuity of
the forces generated from the spring model-based method,
as shown in Figure 8C, F, are nearly the same. So in
fact, the spring model-based method generates force with
the best continuity, as discussed above. Moreover, from
Figure 9 we find that the smoothness of force is greatly
enhanced, which indicates that it better represents a more
realistic force.

Clinical values

Advised by the surgeons from Shanghai Renji Hospital,
our HSS is required to have a high quality of visual
and haptic simulation effects as well as real-time ability.
Therefore, the contact force-based algorithm was chosen
in the second step of the collision response approach and
the spring model-based method was used in the third
step, and the output collision force was mapped to 0–2 N
as the final feedback force.

Copyright 2008 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2008; 4: 77–86.
DOI: 10.1002/rcs

Collision detection and response in a haptic surgery simulator 85

By training on this system, laparoscopic procedure
skills, such as hand–eye coordination, the fulcrum effect
and depth perception, can be brought up as in the
real operating room. This procedural skills training
enables integration of knowledge and judgement into
the technical skills already learned. This may lead to a
reduction in the number of unnecessary complications
occurring due to a failure of technical skills, and the time
and expense spent acquiring basic laparoscopic skills in
the operating room. This makes it possible to chart the
performance of a trainee surgeon through the curriculum
and define the attainment of proficiency.

Conclusion

In this paper, a hierarchical spatial hashing algorithm for a
deformable model’s collision detection is proposed which
improves performance compared with a regular grid-
based spatial hashing in non-uniform-sized tetrahedra.
Meanwhile, a hybrid collision response method is
also proposed. After the ‘force filter’, a continuous
authentic feedback force could be generated. An HSS
for laparoscope-based MIS training was developed based
on these novel methods.

More clinical trials are intended to be implemented
in future research to further fine-adjust the parameters
by comparison to real surgical objects. We consider that,
in the next step of practising this system, performance
can be measured using parameters such as time taken,
number of errors made and path length for each hand. In
this way, the clinical value of the HSS system should be
further validated.

Acknowledgements

We would like to express our gratitude to Dr Junfeng Cai
from Shanghai Zhongshan Hospital and surgeons from Shanghai
Renji Hospital for providing clinical data and advice. We are
also grateful to our team members, Eitz Mathias, Jalda Dworzak
and Jan Boehm, for providing helpful comments and hints. This
research was partially supported by National 863 Research Fund
of China (2007AA01Z312).

References

1. Sud A, Govindaraju N, Gayle R, Kabul I, and Manocha D. Fast
proximity computation among deformable models using discrete
Voronoi diagrams. ACM Transactions on Graphics, 25(3):
1144–1153, July 2006.

2. Govindaraju NK, Knott D, Jain N, Kabul I, Tamstorf R,
Gayle R, Lin MC, Manocha D. Interactive collision detection
between deformable models using chromatic decomposition.
International Conference on Computer Graphics and Interactive
Techniques 2005, Dunedin, New Zealand, 991–999.

3. Galoppo N, Otaduy MA, Mecklenburg P, et al. Accelerated
proximity queries for haptic rendering of deformable models.
World Haptics Conference, Tsukuba, Japan, 2007.

4. Turk G. Interactive Collision Detection for Molecular Graphics.
PhD Thesis, University of North Carolina, 1989.

5. Mirtich B. Efficient algorithms for two-phase collision detection.
In Practical Motion Planning in Robotics: Current Approaches

and Future, edited by K. Gupta and A.P. del Pobil, Cambridge
University Press New York, NY, USA 1998; 203–223.

6. Teschner M, Heidelberger B, Mueller M, et al. Optimized spatial
hashing for collision detection of deformable objects. Proc Vision
Model Visualiz 2003; 47–54.

7. Mathias E, Gu LX. Hierarchical spatial hashing for real-time
collision detection. Shape Modeling and Applications 2007;
IEEE International Conference, June 2007; 61–70.

8. Terzopoulos D, Platt J, Barr A, et al. Elastically deformable
models. ACM SIGGRAPH Comput Graphics 1987; 21(4):
205–214.

9. Ruspini DC, Kolarov K, Khatib O. The haptic display of complex
graphical environments. International Conference on Computer
Graphics and Interactive Techniques, New York, NY, USA, 1997;
345–352.

10. Spillmann J, Teschner M. Contact surface computation for
coarsely sampled deformable objects. Proc Vision Model
Visualization 2005, Erlangen, Germany, 289–296.

11. Barbagli F, Prattichizzo D, Salisbury K. A multi-rate approach to
haptic interaction with deformable objects: single and multipoint
contacts. The International Journal of Robotics Research 2005;
24(9): 703–715.

12. Balaniuk R. A differential method for the haptic rendering of
deformable objects. Proceedings of the ACM Symposium on
Virtual Reality Software and Technology 2006, Limassol, Cyprus,
297–304.

13. Duriez C, Andriot C, Kheddar A. Signorini’s contact model for
deformable objects in haptic simulations. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), CEA,
France, 2004; 4, 3232–3237.

14. Duriez C, Dubois F, Kheddar A, et al. Realistic haptic rendering
of interacting deformable objects in virtual environments. IEEE
Trans Visualiz Comput Graphics 2006; 12: 364–367.

15. Pauly M, Pai DK, Guibas LJ. Quasi-rigid objects in contact.
Proceedings of Symposium on Computer Animation, Grenoble,
France, 2004; 1019–1091.

16. Baraff D. Analytical methods for dynamic simulation of non-
penetrating rigid bodies. ACM SIGGRAPH Comput Graphics 1989;
23(3): 223–232.

17. Johnson KL. Contact Mechanics. The Press Syndicate of the
University of Cambridge, UK, 1985.

18. Oden JT, Kikuchi N. Contact Problems in Elasticity: A Study of
Variational Inequalities and Finite Element Methods. Society for
Industrial Mathematics, SIAM, Philadelphia, 1988.

19. http://www.sensable.com. 2005.
20. Mahvash M, Hayward V. High-fidelity haptic synthesis of contact

with deformable bodies. IEEE Comput Graphics Appl 2004; 24:
48–55.

21. Li X, Gu L, Zhang S, et al. A hybrid collision response
in a haptic virtual surgery system. Proceedings of the
6th International Special Topic Conference on Information
Technology Applications in Biomedicine, Tokyo, Japan, 2007;
1311–1334.

22. Teschner M, Heidelberger B, Muller M, et al. A versatile and
robust model for geometrically complex deformable solids.
Proc Computer Graphics International, 2004. Crete, Greece,
312–319.

23. Baraff D. Fast contact force computation for non-penetrating
rigid bodies. Proceedings of the 21st Annual Conference
on Computer Graphics and Interactive Techniques, Orlando,
Florida, USA, 1994; 23–34.

Appendix I

The domain of response force we worked out is nearly
(−∞, +∞), and the aim of the mapping step was to map
it into (−7.9, 7.9), so the arc tangent function chosen for
its domain was (−∞, +∞) and the range was (−π

2 , π
2),

which can be zoomed to (−7.9, 7.9). The mapping was

Copyright 2008 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2008; 4: 77–86.
DOI: 10.1002/rcs

86 X. Li et al.

defined as follows:

scaledForceX = 2 · arctan(forceX) · forceThreshold
π

scaledForceY = 2 · arctan(forceY) · forceThreshold
π

scaledForceZ = 2 · arctan(forceZ) · forceThreshold
π

(A1)

where forceX, forceY and forceZ are the response forces
in three dimensions, scaledForceX, scaledForceY and
scaledForceZ are the respective corresponding forces after
mapping and forceThreshold is the biggest force sent to the
PHANToM Desktop; clearly, therefore, forceThreshold ≤
7.9.

However, there still exists a problem; for example,
if the force in the x dimension is 1000 N and in the
y dimension 100 N, in fact the force in the x dimen-
sion is a dominating force. However, if we use equa-
tion (6) directly, we get scaledForceX = arctan(1 000) =
1.5698 N, and scaledForceY = arctan(100) = 1.5608 N,
which are nearly the same. To solve this problem, we
find the biggest force in three dimensions, compute its arc
tangent value, then scale the other two forces, so equation
(A1) is improved as follows:

scaledForceX =
2 · forceX · arctan

(forceMax) · forceThreshold
π · forceMax

scaledForceY =
2 · forceY · arctan

(forceMax) · forceThreshold
π · forceMax

scaledForceZ =
2 · forceZ · arctan

(forceMax) · forceThreshold
π · forceMax

(A2)

where forceMax represents the biggest absolute value of
the forces in 3 dimensions. Equation A2 fits most of the
scenario; nevertheless, in a scenario in which forces are
all very strong, e.g. all >100 N, the arc tangent values
will all be near to π

2 and after scaling the results will be
near to the forceThreshold, which is not the ideal result
we want to see. The perfect result is that most of the
arc tangent value is around π

4 , which indicates that most
of the feedback forces are around forceThreshold/2. Here
equation A3 is used:

scaledForceX =
2 · forceX · arctan[(forceMax · π)/

(4 · commonForce)] · forceThreshold
π · forceMax

scaledForceY =
2 · forceY · arctan[(forceMax · π)/

(4 · commonForce)] · forceThreshold
π · forceMax

scaledForceZ =
2 · forceZ · arctan[(forceMax · π)/

(4 · commonForce)] · forceThreshold
π · forceMax

(A3)

where commonForce is the force that appears with a high
frequency. When forceMax = commonForce:

forceMax · π

4 · commonForce
= π

4

where forceMax is scaled to forceThreshold/2.

Copyright 2008 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2008; 4: 77–86.
DOI: 10.1002/rcs

